
41ème Colloque National des Biologistes des Hôpitaux TOULOUSE 2012

La vitamine D... bien plus qu'une simple vitamine!

Mickaël Rousière
Service de Rhumatologie
Hôpital Saint-Antoine (APHP), Paris

site: www.larhumato.fr

@Larhumato et @mrousiere

La Rhumato Saint Antoine

41ème Colloque National des Biologistes des Hôpitaux Toulouse, 24-28 septembre 2012

DECLARATION D'INTERET DANS LE CADRE DE MISSIONS DE FORMATION REALISEES POUR L'ACNBH

Dr Mickael ROUSIERE Exerçant au CHU Saint-Antoine, déclare sur l'honneur avoir un intérêt avec les entreprises pharmaceutiques, du diagnostic ou d'édition en relation avec le DMDIV et/ou le sujet présenté

Interventions ponctuelles : activité de conseil (Servier, Roche, ANSM)

Subventions de recherche et/ou honoraires (Amgen, Pfizer, Servier, Lilly, MSD,

Roche, Chugaï)

Le fol engouement pour la vitamine D!

Les examens de biologie explorant le métabolisme phosphocalcique : une sur-prescription du dosage de la vitamine D ?

Évolution en volume et en montant remboursable des principaux actes explorant le métabolisme phosphocalcique, des marqueurs pancréatiques ainsi que des principaux actes des groupes « Exploration lipidique » et « Immunohématologie » de 2007 à 2009

Libellé de l'acte	Nombre d'actes (en milliers)			Évolution 2008-2009	Montant remboursable (en millions d'euros)			Évolution 2008-2009
	2007	2008	2009	2006-2009	2007	2008	2009	2008-2009
Calcémie	5 164	5 628	6 107	8,5 %	20,9	22,8	17,7	-22,5 %
Phosphorémie	1714	1 886	2 042	8,3 %	6,7	5,1	5,5	7,7 %
25-hydroxycholécalciferol (25 0H-D3)	442	868	1 550	78,6 %	13,0	23,4	38,1	62,7 %
Dérivés dihydroxylés de la vitamine D	29	43	73	70,6 %	0,9	1,3	1,8	43,4 %
Parathormone (1-84 ou bioactive)	255	325	387	19,2 %	5,4	6,1	7,3	19,1 %
Total des 5 actes	7 604	8 749	10 159	16,1 %	46,9	58,8	70,4	19,9 %

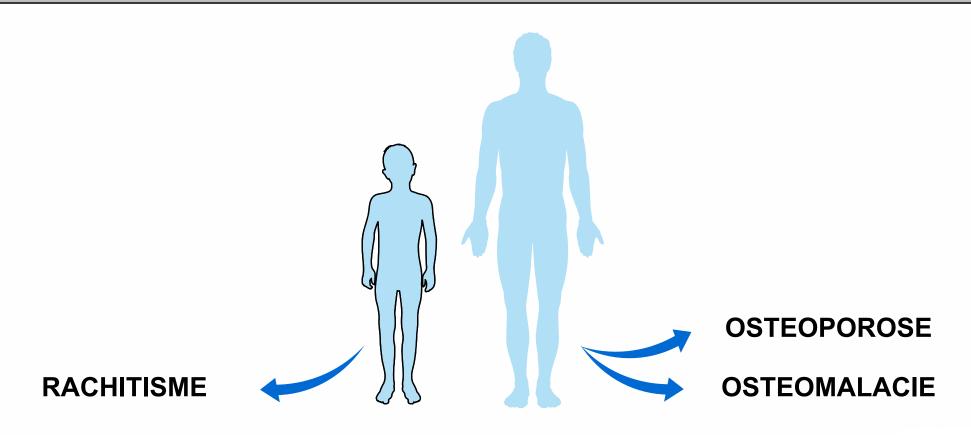
Champ : Régime général hors SLM - France métropolitaine Source : DCIR (CNAMTS)

Source : Delit (CIV/IVII S)

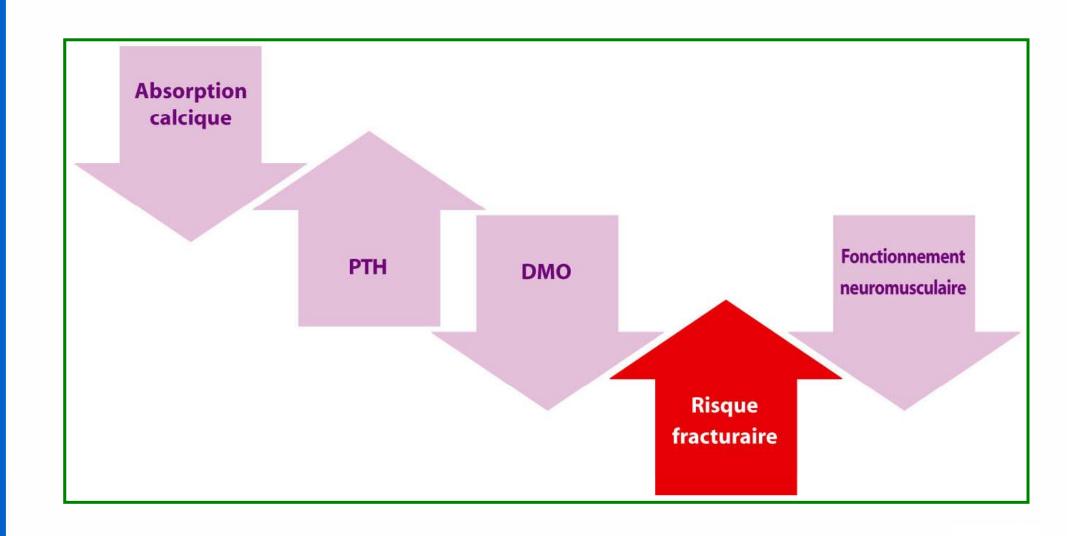
Et pourtant... le prix de l'acte a pourtant été baissé à 3 reprises depuis 2007

Points de repère n° 34 - janv 2011. Les actes de biologie médicale : analyse des dépenses en 2008 et 2009

La vitamine D... une hormone bien mal nommée!

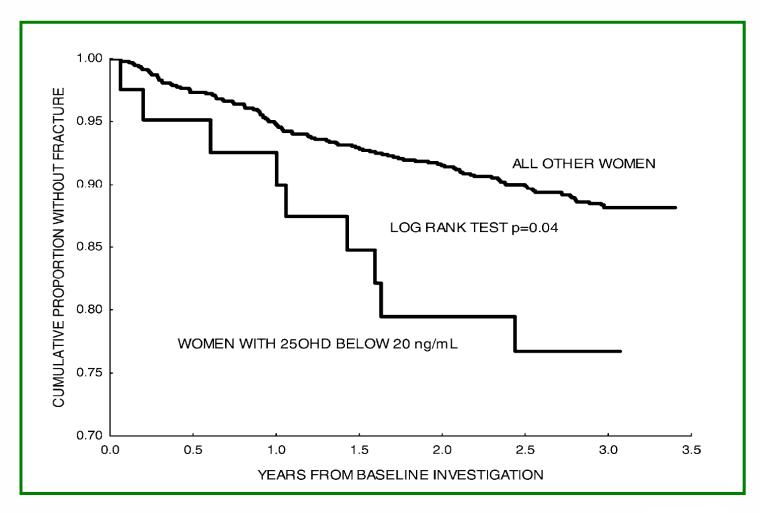

- Forme active: 1,25 (OH)₂ vitamine D
- Rôle le mieux connu : métabolisme phospho-calcique et osseux
 - stimulation de l'absorption intestinale de calcium et de phosphates
 - optimisation du produit phospho-calcique (minéralisation et croissance)
 - rétro-contrôle négatif sur la sécrétion de PTH
- Véritable hormone (action endocrine, paracrine et autocrine)
- Récepteur spécifique (VDR) sur de nombreux tissus
- Régule l'expression de nombreux gènes
- Le statut en vitamine D est représenté par le dosage sérique de 25(OH) vitamine D, qui suit un cycle saisonnier

Quelles sont les conséquences cliniques de


l'insuffisance en vitamine D?

Complications d'un déficit en vitamine D

Complications classiques d'un déficit


Complications d'un déficit en vitamine D

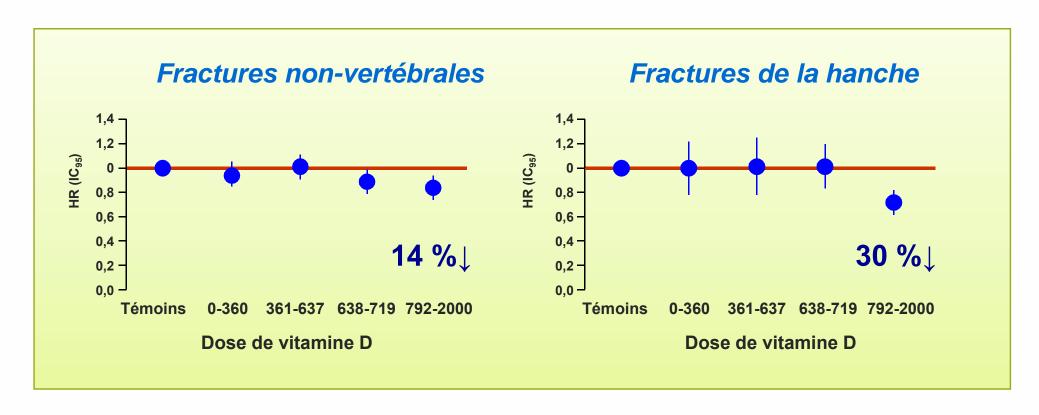
Complications d'un déficit en vitamine D : risque fracturaire

Etude OPRA

- Suède
- 1604 femmes
- âge ≥ 75 ans
- PTH: + 37 % (p < 0.001)

Gerdhem P, Osteoporos Int 2005

Effet de la supplémentation en vitamine D sur le risque fracturaire

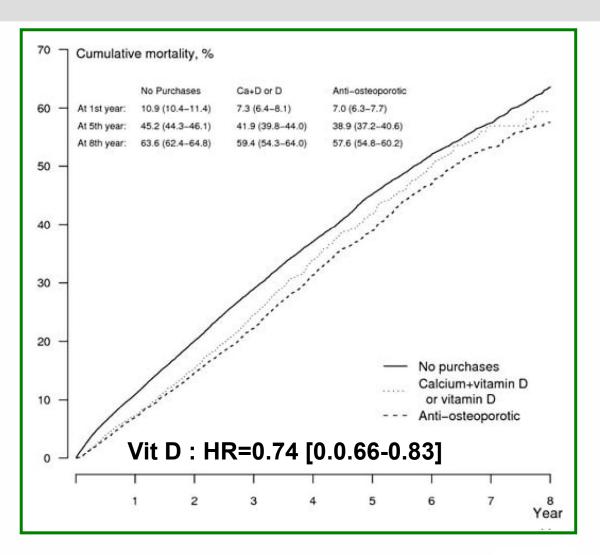

- Méta-analyse fondée sur 12 essais contrôlés, randomisés, en double aveugle
- Analyse des données individuelles de 31.022 patients âgés de plus de 65 ans
- Modèle de Cox en régression avec analyse en quartiles
- 3 770 fractures non vertébrales
- 1 111 fractures de hanche
- Quelle que soit la dose de vitamine D, on observe :
 - une diminution du risque de fracture de hanche de 10 %

$$HR = 0.9 (IC_{95} : 0.8-1.01)$$

une diminution du risque de fractures non vertébrales de 7 %

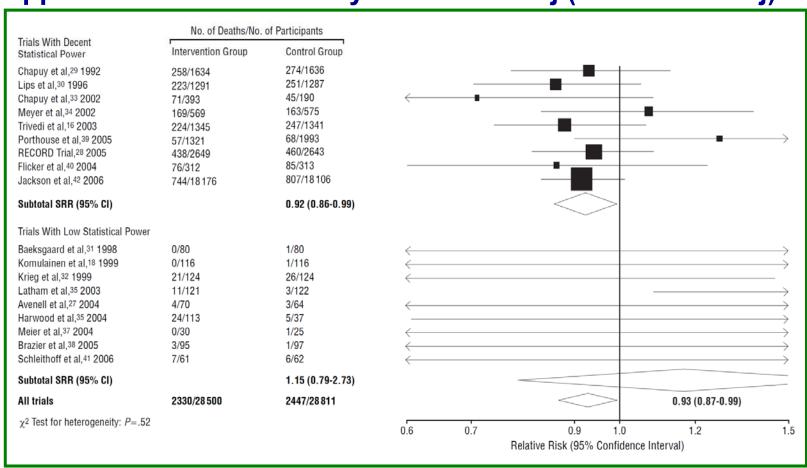
$$HR = 0.93 (IC_{95} : 0.87 - 0.99)$$

Effet de la supplémentation en vitamine D sur le risque fracturaire : effet dose

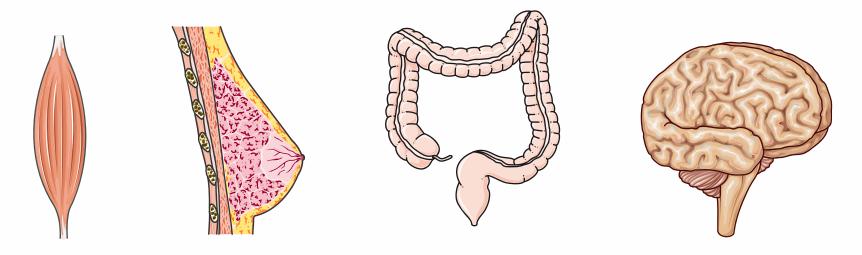

 $HR = 0.86 (IC_{95} : 0.76 - 0.96)$

 $HR = 0.70 (IC_{95} : 0.58-0.86)$

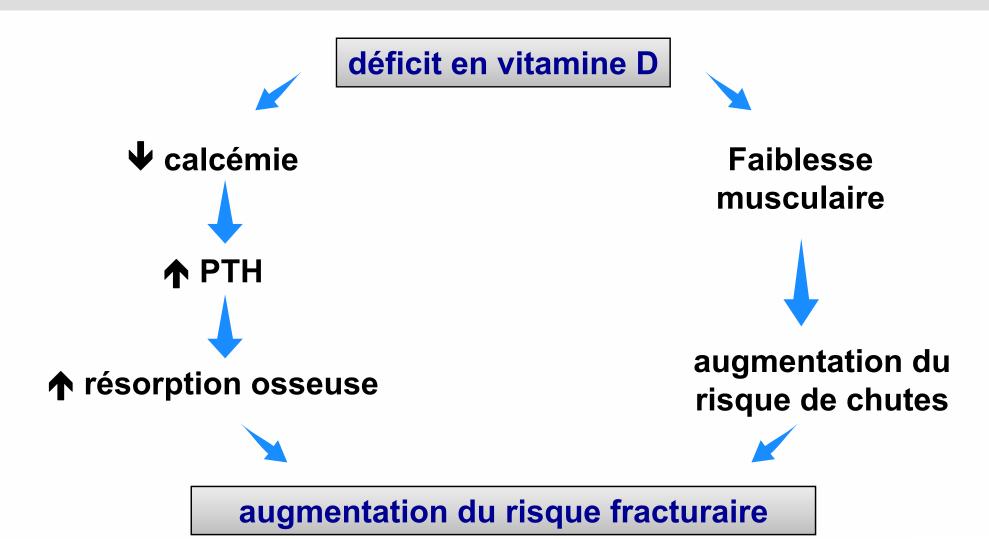
Vitamine D et mortalité post-fracture


Etude de registre finlandais

- 23.615 patients ≥ 50 ans
- au décours d'une FESF
- âge moyen 76,8 ans

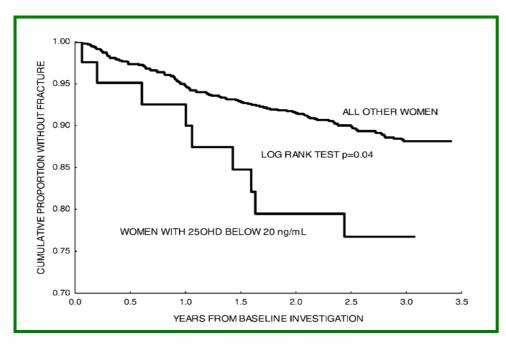

Suppléments en vitamine D et mortalité

Méta-analyse de 18 essais randomisés, contrôlés (57311 patients) Apports en vitamine D moyens de 528 UI/j (300 à 2000 UI/j)


Vitamine D: au delà des effets osseux...

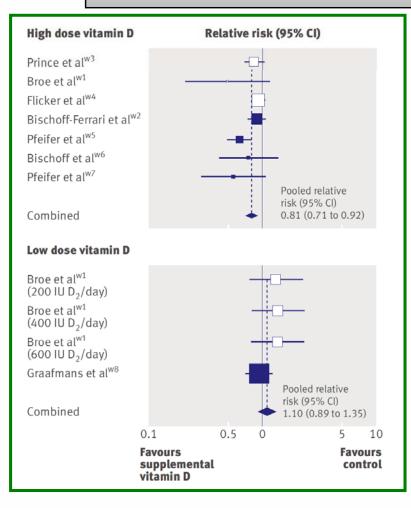
Actions extra-osseuses potentielles

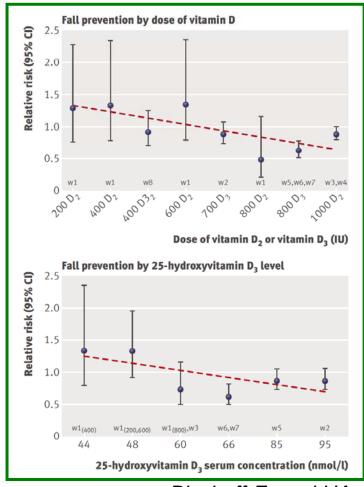
- Présence de récepteurs à la vitamine D (et une activité 1 α hydroxylase)
- Capacité de transformer la vitamine D en sa forme active (calcitriol)


Insuffisance en vitamine D et risque de chutes

Statut en 25 (OH) vitamine D et performances musculaires

Etude OPRA (Suède)


- Femmes âgées de 75 ans
- PTH: + 37 %, p < 0.001
- Temps d'activité extérieure : 34 %, p < 0.001
- Temps de marche : + 19 %, p < 0.001
- Force du quadriceps : 9 %, p = 0.09
- Test d'équilibre : 23 %, p =0.019



Gerdhem P, Osteoporos Int 2005

Prévention des chutes et suppléments en vitamine D chez des adultes de plus de 65 ans

8 études randomisées contrôlées (n=2426)

Bischoff-Ferrari HA et al. BMJ 2009

Autres potentiels effets extra-osseux de la vitamine D

- Récepteur à la vitamine D (VDR) présent dans de multiples tissus
- Effet immuno-modulateur (PR, lupus, diabète, SEP...)
- Effet anti-infectieux : rôle du calcitriol dans la synthèse de peptides antimicrobiens (cathélicidines) = antibiotiques endogènes
- Effet anti-tumoral : études observationnelles (certains cancers moins fréquents si taux de vitamine D les plus élevés)
- Effet cardio-vasculaire : études observationnelles (HTA, AVC et calcifications artérielles)

Quelles sont les valeurs recommandées

de 25 (OH) vitamine D circulante?

Comment définir les valeurs seuils ?

Objectif souhaitable : ≥ 30 ng/ml (75 nmol/l)

Taux
inadéquats
mauequats

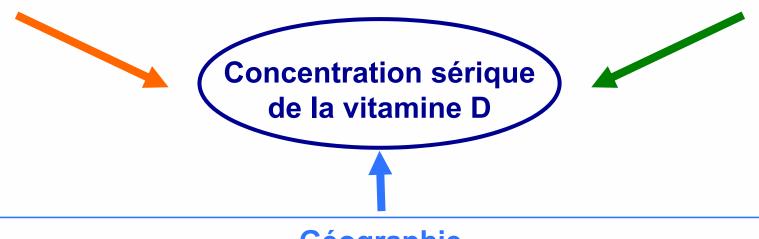
25 OH vitamine D2+D3	nmol/l	ng/ml
Déficience	< 25	< 10
Insuffisance	25 - 78	10 - 30
Plage souhaitable	78 – 125/175	30 – 50/70
Hypervitaminose	≥ 250/375	≥ 100/150

Hollis BW et al. J Nutr 2005 Benhamou CL et al. Presse Med 2011 Quelle est l'épidémiologie de l'insuffisance

et de la carence vitaminique D?

Quelles sont les populations à risque ?

Individu


Génétique

7-DHC réductase, 25 OHase, 24 OHase

Age, sexe, IMC, phototype

Mode de vie

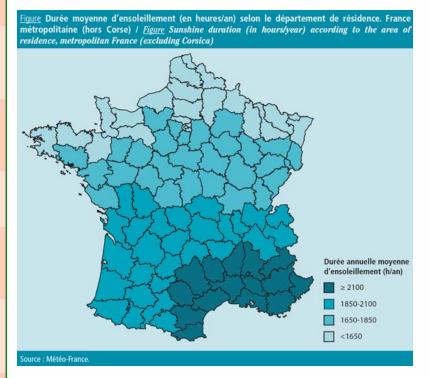
Alimentation, tabac, vêtement, sport, activités extérieures

Géographie

Climat, Latitude, Nébulosité, Pollution, Saison

Statut en vitamine D de la population adulte en France : l'Étude nationale nutrition santé (ENNS, 2006-2007)

BEH 16-17 / 24 avril 2012


Michel Vernay (michel.vernay@univ-paris13.fr), Marie Sponga, Benoît Salanave, Amivi Oléko, Valérie Deschamps, Aurélie Malon, Katia Castetbon

Unité de surveillance et d'épidémiologie nutritionnelle (Usen), Institut de veille sanitaire, Université Paris 13, Bobigny, France

<u>Tableau 1</u> Concentrations sériques moyennes en 25(OH)D (ng/ml) et distribution (%) selon les valeurs seuils parmi les adultes de 18-74 ans en France métropolitaine. Étude nationale nutrition santé (ENNS), 2006-2007 / <u>Table 1</u> Mean serum concentrations of 25(OH)D (ng/ml) and distribution (%) according to thresholds in 18-74-year-old adults in metropolitan France. French Nutrition and Health Survey (ENNS), 2006-2007

	Concentration (ng/ml)			Distribution (%)		
	Moyenne	IC95%	Р	<10 ng/ml	<20 ng/ml	<30 ng/ml
Sexe						
Hommes	24,0	[23,1-24,9]	0,01	3,6	35,8	78,7
Femmes	22,0	[21,0-23,0]		5,9	49,0	81,4
Âge						
18-29 ans	23,0	[21,0-24,9]	0,99	7,5	45,9	79,2
30-54 ans	23,0	[22,2-23,8]		5,2	41,4	79,1
55-74 ans	23,0	[22,0-24,1]		1,9	41,7	82,4
Lieu de naissance						
Europe	23,3	[22,6-24,0]	<10-3	3,7	41,5	79,3
Autre	18,6	[16,6-20,6]		21,4	57,1	91,7
Situation matrimoniale						
En couple	23,4	[22,7-24,1]	0,09	3,2	40,3	79,5
Seul	21,9	[20,3-23,5]		9,1	48,2	81,5

	Concentration (ng/ml)			Distribution (%)			
	Moyenne	IC95%	Р	<10 ng/ml	<20 ng/ml	<30 ng/ml	
Vacances au cours des 12 derniers mois							
Oui 	23,7	[22,9-24,5]	0,01	2,9	39,8	79,1	
Non H. d. (2)	21,3	[20,1-22,5]		9,5	49,2	82,5	
Indice de masse corporelle (kg/m²)	22.0	[22.7.24.0]	40.2	F 2	44.2		
<25	23,8	[22,7-24,9]	<10-3	5,3	41,2	77,7	
[25-30[≥30	22,9 20,5	[21,9-23,8]		3,0 6,6	40,0 52,1	82,9 85,5	
Statut tabagique actuel	20,5	[19,1-21,9]		0,0	52,1	85,5	
Non-fumeur	23,6	[22,9-24,3]	0,01	3,9	39,3	78,1	
Fumeur	21,2	[19,7-22,7]	0,01	7,3	52,0	85,8	
Consommation d'alcool	21,2	[13,7 22,7]		7,5	32,0	05,0	
< Repères ^{1,2}	22,9	[22,2-23,6]	0,11	3,8	42,1	79,8	
Abstinent	22,0	[19,9-24,1]	0,11	9,9	52,8	84,3	
≥ Repères²	24,7	[22,9-26,4]		3,0	31,0	76,0	
Niveau d'activité physique (IPAQ)	,.	[//.]		-,-	,	,	
Élevé	25,1	[23,8-26,4]	<10-3	5,2	30,0	71,9	
Modéré	21,8	[20,8-22,7]		4,1	48,9	84,6	
Bas	22,6	[21,4-23,7]		5,2	45,8	82,0	
Sédentarité (temps moyen écran en h/j)							
<3	23,9	[22,9-25,0]	0,01	4,2	39,1	76,3	
≥3	22,1	[21,3-22,9]		5,3	45,7	83,7	
Apports alimentaires en vitamine D (tertiles en µg/j)							
≥2,2	24,6	[23,5-25,7]	<10-3	4,1	33,7	76,7	
[1,3-2,2[23,1	[21,9-24,2]		3,0	43,5	81,1	
<1,3	21,3	[20,1-25,7]		7,1	50,5	82,5	
Période de prélèvement biologique		[25 2 22 5]	400			a= a	
Juin-septembre	27,2	[25,9-28,5]	<10-3	1,3	24,4	65,0	
Octobre-janvier	24,0	[22,7-25,3]		2,6	38,3	78,9	
Février-mai	19,8	[18,9-20,7]		8,2	56,2	90,1	
Durée moyenne d'ensoleillement du département de résidence (h/an)							
≥2 100	28,2	[25,4-31,0]	<10-3	1,3	26,3	64,1	
[1 850-2 100[22,8	[21,7-23,8]		3,5	40,5	80,5	
[1 650-1 850[22,2	[21,1-23,3]		5,6	46,3	84,4	
<1 650	21,8	[20,7-22,9]		6,7	47,5	82,2	

Qui traiter sans dosage préalable

indispensable de 25 (OH) vitamine D?

(en France)

Qui traiter sans dosage préalable indispensable de 25 (OH) vitamine D?

- Tous les sujets de 65 ans et plus
 - → Rapport bénéfices/risques très favorable
 - → Economiser le coût de millions de dosages
- La possibilité de traiter sans dosage préalable indispensable ne signifie pas qu'aucun de ces sujets ne nécessite de dosage
 - l'indication reste une décision individuelle malade par malade
 - sujet âgé jugé à haut risque de carence peut justifier un dosage de 25 (OH) vitamine D pour sa prise en charge, les carences et les taux effondrés proches de 0 nécessitant de mesures particulières

Chez qui effectuer un dosage

de 25 (OH) vitamine D afin de décider

d'un traitement?

Dans toutes les situations au cours desquelles l'objectif thérapeutique est d'obtenir un taux optimal de 25-(OH)-vitamine D pour une prise en charge adaptée, il est nécessaire de connaître la valeur initiale pour adapter les schémas d'attaque et d'entretien de la supplémentation.

- Exposition solaire nulle ou quasi nulle (dont vêtements couvrants)
- Chutes à répétition
- Ostéoporose avérée (primitive ou secondaire, femmes et hommes)
- Maladies favorisant l'ostéoporose (PR, Crohn, RCH, hyperthyroïdie, HPT, Cushing, malabsorption, ménopauses précoces, addictions...)
- Médicaments inducteurs d'ostéoporose (corticothérapie, héparines, anticonvulsivants, anti-aromatases, les analogues GnRH…)
- Pathologie chronique sévère et grossesse

Qui traiter?

- Les sujets de plus de 65 ans (sans dosage préalable indispensable).
- Les sujets en carence ou en insuffisance lorsqu'un dosage est pratiqué.

Quelle vitamine D choisir?

- La vitamine D de préférence au cours du repas, sauf
 - 25 (OH) vitamine D (Dégrogyl®) : IHC, inducteurs enzymatiques
 - 1,25 (OH)₂ vitamine D (Calcitriol®) ainsi que la 1α (OH) vitamine D (Un-Alpha®) : IRC, hypo et pseudo-hypoparathyroïdie, diabète phosphaté
- Plutôt la D3 (Uvédose®, ZymaD® ...) que la D2 (Stérogyl®) si supplémentation avec des doses espacées
- Seule ou associée à un supplément en calcium (b observance!)

Quelle est la bonne dose de vitamine D nécessaire chaque jour ?

consensus d'experts

800 - 1200 UI vitamine D par jour

statut vitaminique D satisfaisant

25(OH) vitamine D ≥ **30** ng/ml (**75** nmol/l)

Comment prescrire un traitement systématique (ou traitement d'entretien)?

Objectif: maintenir 25(OH) vitamine D ≥ 30 ng/ml (75 mmol/l)

Supplémentation intermittente

1 amp UVEDOSE tous les 2 à 3 mois

ou

Supplémentation quotidienne

800-1200 UI/j en vitamine D3 ou D2

Les doses sont majorées si :

- malabsorption
- syndrome néphrotique
- obésité

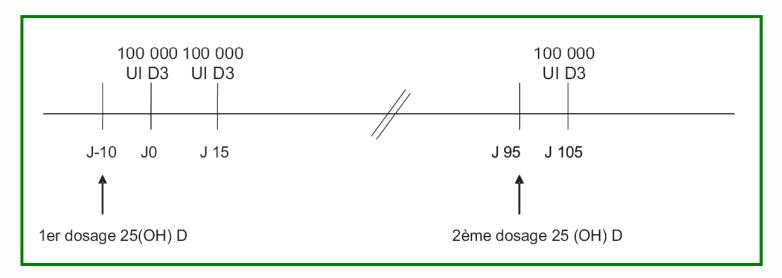
Comment prescrire un traitement d'attaque en cas d'insuffisance en vitamine D?

Objectif : obtenir 25(OH) vitamine D ≥ 30 ng/ml (75 mmol/l)

25(OH) vitamine D <10 ng/ml

1 amp UVEDOSE/2 semaines pdt 2 mois (4 amp)

25(OH) vitamine D entre 10 – 20 ng/ml

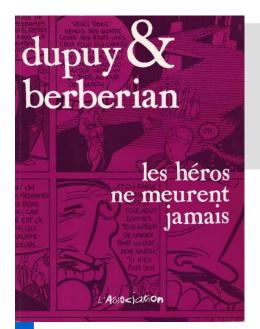

1 amp UVEDOSE/2 semaines pdt 1.5 mois (3 amp)

25(OH) vitamine D entre 20 – 30 ng/ml

1 amp UVEDOSE/2 semaines pdt 1 mois (2 amp)

Faut-il contrôler l'évolution du taux de 25 (OH) vitamine D sous traitement ?

- OUI s'il existe un dosage pré-thérapeutique
 - Objectif : vérification de l'efficacité (taux ≥ 30 ng/ml)
 - Aide aux modalités du traitement d'entretien (doses, intervalles)
 - A faire 3 mois après la dernière ampoule du traitement d'attaque


Les aliments enrichis en vitamine D ou

l'exposition solaire régulière peuvent-ils

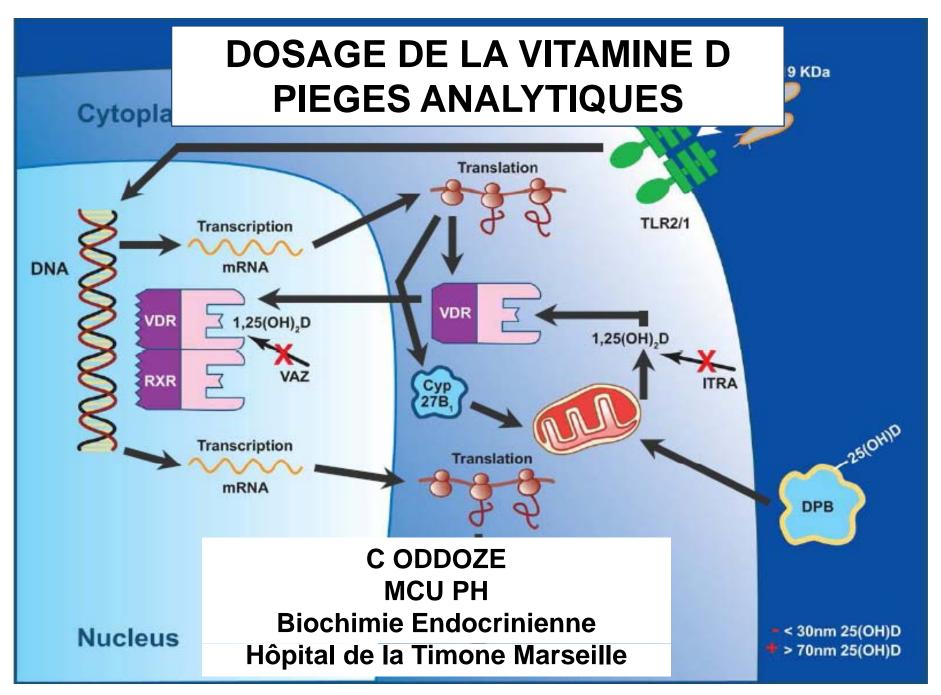
couvrir les besoins?

Les apports en vitamine D

- L'alimentation occidentale n'apporte que 100 à 200 UI de vitamine D par jour... pour des besoins estimés entre 800 et 1200 UI par jour
- Les aliments enrichis sont à considérer comme un apport additionnel minime : ne pas en tenir compte !
- L'exposition solaire quotidienne
 - 30 minutes par jour pendant 3 semaines
 - d'environ 30 % de la surface corporelle
 - en France, entre juin et octobre
 - → n'apporte que 10.000 UI de vitamine D...

Les vrais héros ne meurent jamais!

Vitamine D: conclusions

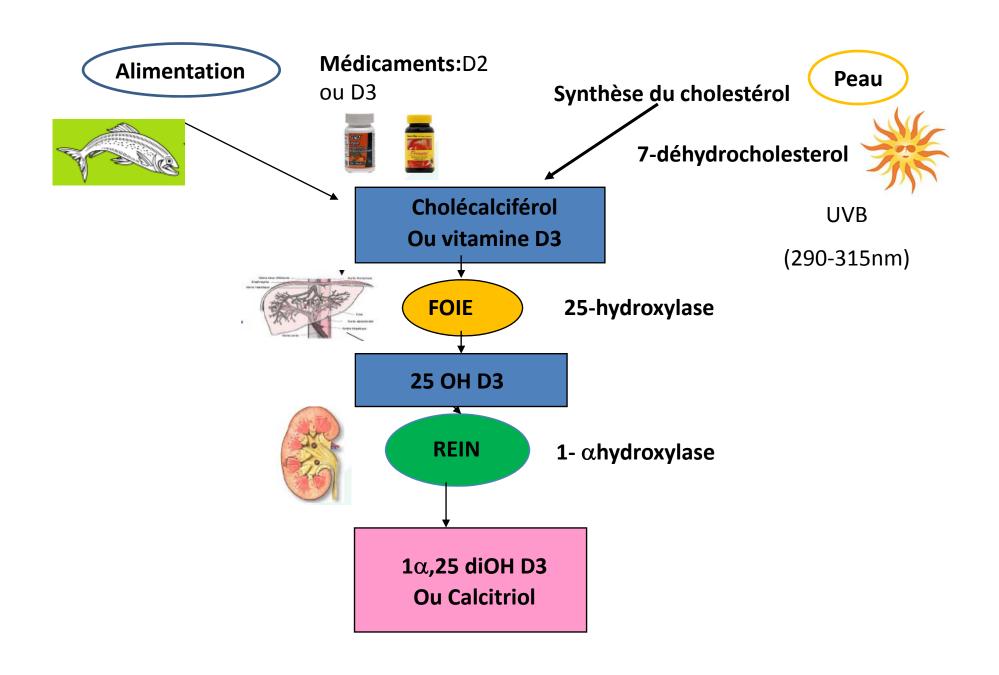

La revue des effets extra-osseux de la vitamine D, en complément de ce que l'on sait de ses effets osseux, indique :

- 1. qu'il est être très utile de s'interroger sur le statut vitaminique D de nos patients
- 2. qu'il est sage de mesurer le taux de la 25 (OH)vitamine D chaque fois que l'on a un doute sur une insuffisance ou une carence
- 3. qu'il est toujours très important de veiller à ce que les apports minimums quotidiens en vitamine D soient d'au moins 800 UI/j pour avoir un taux sérique > 30 ng/ml

Merci de votre attention ...

Diaporama disponible sur : http://www.larhumato.fr

41è Colloque National des Biologistes des Hôpitaux TOULOUSE 2012


41^{ème} Colloque National des Biologistes des Hôpitaux Toulouse, 24-28 septembre 2012

DECLARATION D'INTERET DANS LE CADRE DE MISSIONS DE FORMATION REALISEES POUR L'ACNBH

Mme ODDOZE Christiane Exerçant au CHU de Marseille: AP-HM déclare sur l'honneur

ne pas avoir d'intérêt, direct ou indirect (financier) avec les entreprises pharmaceutiques, du diagnostic ou d'éditions en relation avec le DMDIV et/ou le sujet présenté.

Sources de vitamine D2 et D3

```
D3 = cholécalciférol

peau
aliments d'origine animale
médicaments
```

D2 = ergocalciferol alimentaires: très faible médicaments

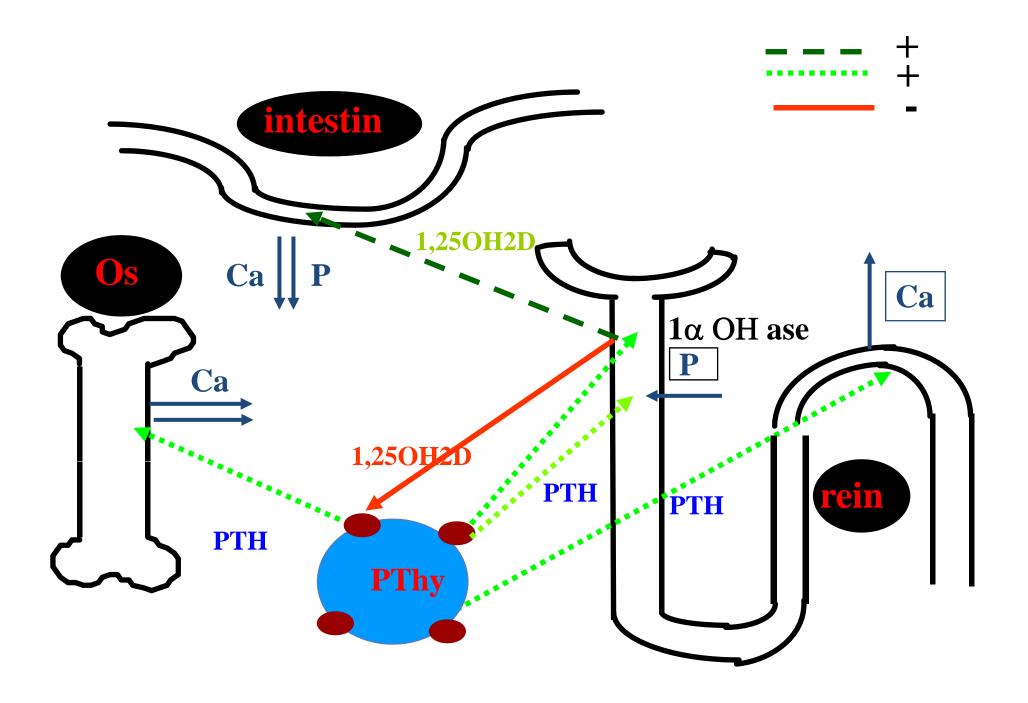
Hormones calcitropes

PTH = hyper Ca, hypo P

7 réabsorption rénale du Ca

stimule la transformation de vitD \rightarrow calcitriol

→ réabsorption rénale du P


Vitamine D ou 25(OH)D = hyper Ca, hyper P

stimule l'absorption intestinale du Ca et P

favorise la minéralisation osseuse

rétrocontrôle sur PTH

de nombreuses cellules (cerveau, prostate, sein, colon, muscle, cellules de l'immunité) sont sensibles au calcitriol

Que doser???

•Hydroxylation hépatique du Cholécalciferol par 25 hydroxylase (CYP2R1) donne:

Vitamine D= 25(OH)D = ProHormone

Transportée par DBP (Vitamin D Binding protein)

 $\frac{1}{2}$ vie = 3-4 semaines

Se lie à une protéine de surface la megaline pour entrer dans la cellule du tube proximal rénal

```
    Hydroxylation rénale par 1-alphahydroxylase (CYP27B1) donne :
    1,25(OH)2D :Calcitriol = Hormone active,
```

½ vie= 4h

Hydroxylation par la 1 alphahydroxylase stimulée par:

PTH

Hypophosphatémie

Faibles apports alimentaires en Calcium

Hydroxylation inhibée par:

FGF 23

hyperphosphatémie

La 25OHD = indicateur du statut vitaminique : activité 500 fois plus faible que la 1,25(OH)2D mais concentration 1000 fois plus grande

Dosage de la 25(OH)D:

si hypovitD modérée:

absorption intestinale du Ca 🗵

⇒ 7 sécrétion de PTH:

stimule le remodelage osseux (os cortical)

☑ la densité minérale osseuse (os cortical) (à long terme)

et stimule l' α hydroxylase: 7 1,25 (OH)2D

Dosage du 1,25(OH)2D:

pas pour évaluer le statut vitaminique

- •dans granulomatose (= production ectopique de calcitriol): ↗
- •dans diabète phosphaté (= inhibition de la synthèse de 1-25 (OH)2D, rarissime):
- •diagnostic du rachitisme vitamino-résistant (RVR très rare)
- •dans IRC stade 2 ou 3 si suplémentation en 1-25 OHD

Etude des Valeurs de référence

« population-based reference values »

```
(nmol/l \times 0.4 = ng/ml)
```

Valeurs de référence établies au Laboratoire (Liaison):

```
n=30 sujets de 20 à 60 ans
```

$$26.0 - 88.0 \text{ nmol/l}$$
 (10 - 35 ng/ml)

Valeurs usuelles proposées par les industriels en RIA:

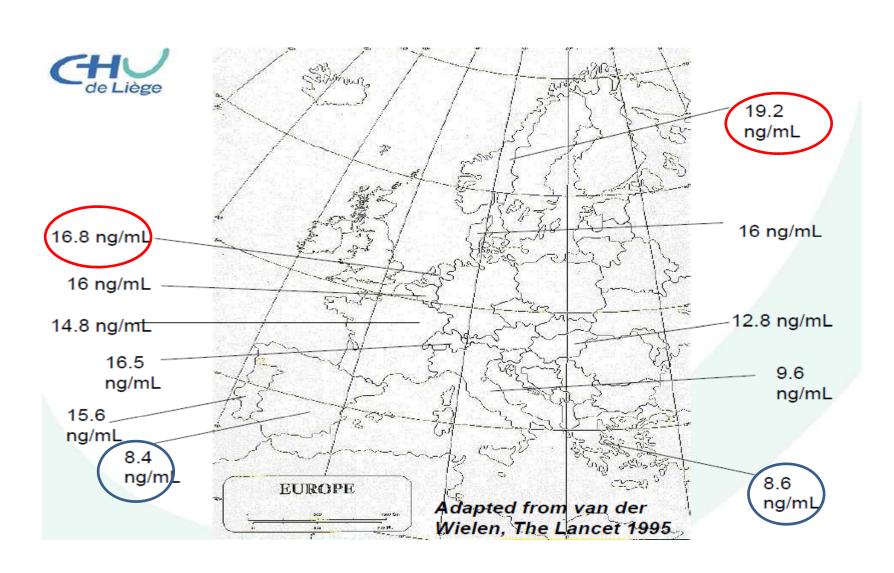
25-120 nmol/l (10-48 ng/mL)

En France, les valeurs de référence pour la 25 OHD varient de 25-100 nmol/L (10 - 40 ng/mL)

N=1579 sujets

Table 1. Prevalence of vitamin D insufficiency in the general adult urban French population (1579 subjects; 765 men aged 45-60 years, 804 women aged 35-60 years)

Region	n	s.25(OH)D (nmol/l) ^a	Sunshine (h/day) ^b	% Hypovitaminosis D	s.PTH (pg/ml)
North	200	43±21	1.06	29	42±15
Center	85	45 ± 25	0.80	31	40 ± 15
North East	199	52 ± 26	1.16	18	42 ± 16
North West	300	58±29	0.78	14	38 ± 17
Paris	98	59 ± 25	1.72	13	46 ± 24
Rhône-Alpes	200	62 + 27	2.71	9	40 ± 15
Mediterranean Coast	299	68 ± 27	2.83	7	35 ± 13
South	89	81 ± 27	2.19	6	40 ± 11
South West	100	94 ± 38	2.00	0	37 ± 11


s., serum; 25(OH)D, 25-hydroxyvitamin D; PTH, parathyroid hormone.

Chapuy MC, Preziosi P et al. Osteoporos Int (1997) 7:439-443

^aThe latitude varies from 51° N to 43° N. A significant relation was found between latitude and s.25(OH)D concentrations (r = -0.79; p < 0.01). ^bA significant correlation was found between s.25(OH)D concentrations and sunshine in the nine regions (r = 0.72; p = 0.003).

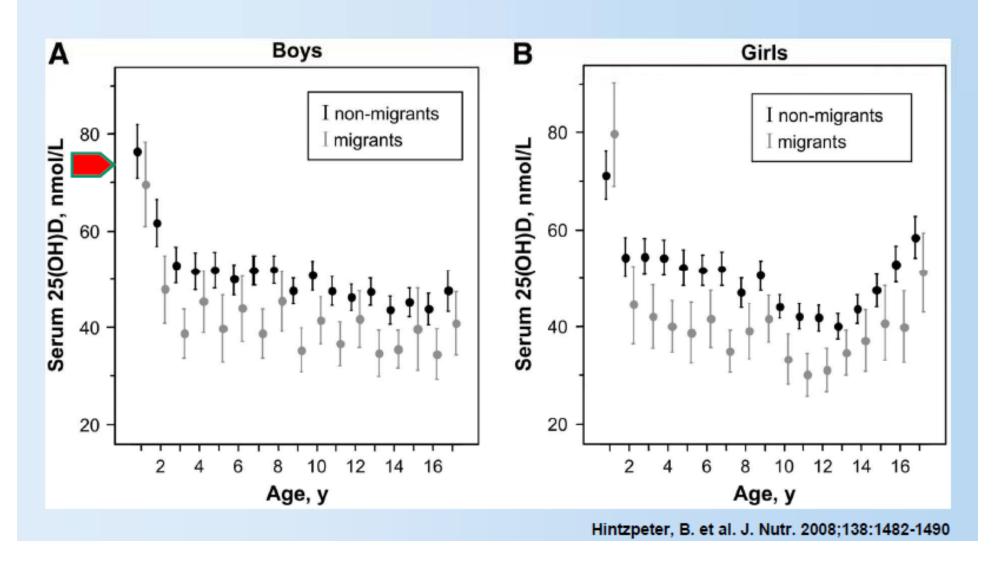
Chez les personnes âgées: Etude Euronut-SENECA:

Étude de la prévalence de la carence en vitamine D chez les personnes âgées

Etude en Europe du Nord:

1/3 des adolescentes ont un taux de vitamine D < 25 nmol/l

Table 2 Percentages (%) with S-25OHD below 25 and 50 nmol/l


	<25	< 50
Girls		
Denmark	51	93
Finland	37	97
Ireland	26	89
Poland	33	87
All girls	37	92
	< 25	< 50
Women		
Denmark	17	55
Finland	10	57
Ireland	14	60
Poland	25	92
All women	17	67

Andersen R, Molgaard C et al; Eur J of Clin Nut (2005) 59, 533-41

Chez les enfants

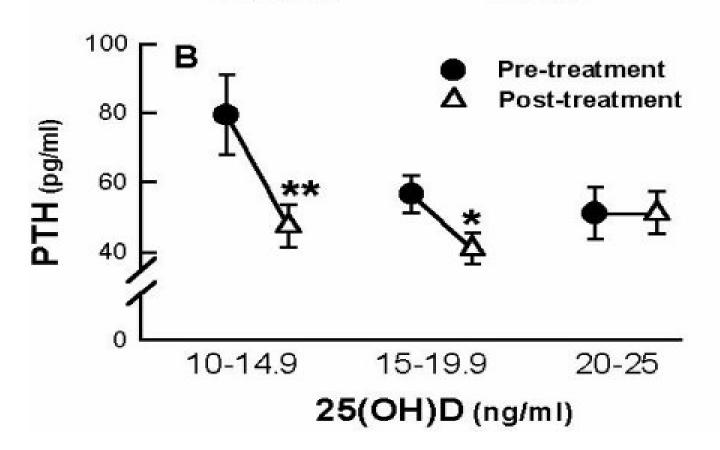
Higher Prevalence of Vitamin D Deficiency Is Associated with Immigrant Background among Children and Adolescents in Germany

Birte Hintzpeter, Christa Scheidt-Nave, Manfred J. Müller, Liane Schenk, and Gert B. M. Mensink

Etude des Valeurs « souhaitables »

« population-based reference values »

"When ordering and interpreting serum 250HD concentration, the physician needs, in virtually all cases, to ignore the laboratory's published reference range" R Heaney Osteoporos Int (2000) 11: 553-555.


"It may be more appropriate to use health-based than population-based reference values for serum 250HD i.e., reference limits based on avoidance of adverse health outcomes for the skeleton"

P Lips Endocrine Reviews (2001) 22: 477-501.

« health-based reference values »

Proposition de définition de l'insuffisance en vitamine D: (P Lips Endocr Reviews 2001 ; 22 : 477-501) :

25 OHD < ou = 50 nmol/L (20 ng/mL)

Pour d'autres, il faut 250HD > 30 ou même 40 ng/mL.

Donc pas de consensus!

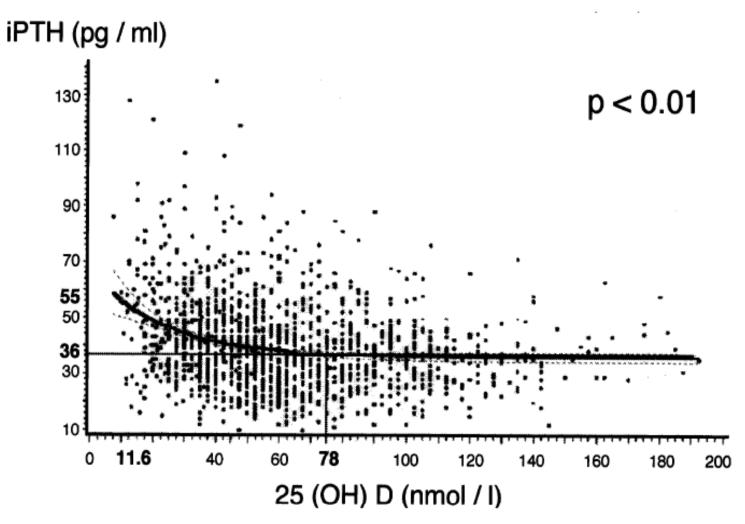
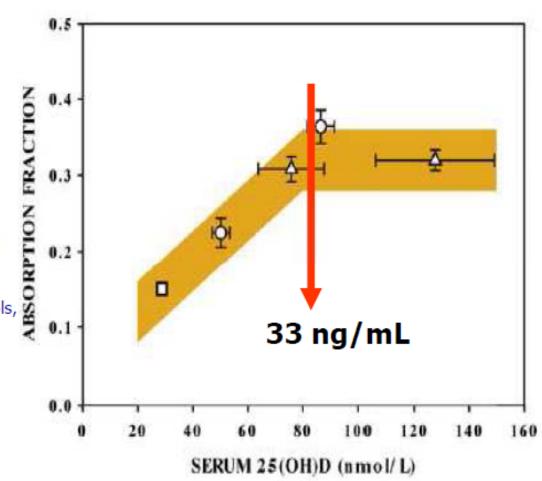


Fig. 1. Relationship between serum intact parathyroid hormone (iPTH) and 25-hydroxyvitamin D (25(OH)D) values in the whole population studied. For a 25(OH)D concentration higher than 78 nmol/l (31 ng/ml), there is a plateau level at 36 pg/ml for iPTH. When 25(OH)D values are lower than 78 nmol/l (31 ng/ml), the serum iPTH values begin to increase.


Chapuy MC, Preziosi P et al. Osteoporos Int (1997) 7:439-443

ABSORPTION OF CALCIUM FROM DIET

The effect of vitamin D nutrition (based on

serum 25(OH)D
reaches a plateau at
about 80 nmol/L).

Fig. 2. Calcium absorption fraction
plotted as a function of serum 25OHD
concentration in three studies. The
paired 0 symbols represent the data
of one study [11]; the paired D symbols,
a second study [12], and the 0 symbol a second study [12], and the o symbol is the estimated absorption for the subjects not treated with Vitamin D in the study of Bischoff et al. [13,14]. (Copyright Robert P. Heaney, 2003. Used with permission.)

Heaney R et al. Calcium absorption varies within the reference range for 25-hydroxy vitamin D . J Am Coll Nutr 2003 ; 22 : 142-146

Etude de 6 experts sur les taux « souhaitables »:

Table 2 Estimates of the minimum serum 25(OH)D levels optimal for fracture prevention and the doses of vitamin D₃ needed to achieve them. From Dawson-Hughes et al. [1], with permission

Investigator	Optimal 25(OH)D level, <u>nmol/l</u>	Oral vitam needed to average op 25(OH)D	timal
Lips Holick Heaney Meunier Vieth Dawson-Hughes	50 75 80 75 70 80	μg/d 10–15 25 40 20 25 25	IU/d 400-600 1,000 b 1,600 800 1,000 1,000

^{*}Estimated dose to deliver the average 25(OH)D levels given in the table (equivalent to an estimated average requirement).

Dawson-Hugues, Heaney R et al, Osteoporos Int (2005) 16:713-716

^bConsistent with the recent observation that 1,000 IU of vitamin D₃/d in orange juice maintained an average 25(OH)D level of 94 ± 20 nmol/1 [35]

Standardisation

- ⇒ difficultés liées à la nature lipophile (possibles interférences non spécifiques avec des autres lipides)
- ⇒ effet matrice qui le rend problématique pour les techniques IA: dénaturation du sérum « humain » pour la préparation d'un calibrant, calibrant doit être dissous dans l'ethanol
- ⇒ résultats erronés quand la 250HD est ajoutée in vitro vs 250HD endogène (problème d'équilibre avec la VDBP)
- ⇒ nécessité de séparer la 250HD de la protéine porteuse en espérant un taux de 100%

•Standard International prochainement?

En 2011: VDSP: US NIH, CDC et Prevention, NIST..

rendre le dosage de la 250HD **exact et comparable** entre les labos:

Standardiser la 250HD en reliant le dosage au processus de référence du NIST and Ghent:

Standard Reference Materiel: SRM 972:

solutions de calibration de 25(OH)D2 et D3: SRM2972

Dosages

2 types de méthodes:

- -LC-based methods
- -Antibody-based methods (Hollis antibody)

ImmunoAssay:

La plupart des IA utilisent un **prétraitement** pour libérer la 25(OH)D et inactiver ou éliminer la VDBP: ajout de solvant organique, dénaturation par sol.alcaline, libération des substances comme le 8-anilino-1-naphtalensulfonic acid(ANSA).

Méthode par compétition: un « **specifier** »: AC antiVitD ou une VDBP ; la 250HD du sérum entre en compétition avec la 250HD marquée pour se fixer sur le specifier;

Méthode de Référence

m. physiques : Chromatographiques couplées à la SM:

LC-MS/MS : séparation des différents métabolites

Immunoassay	Anticorps	Calibrant	prétraitement
Centaur	Souris monocl.	Standardise/LCMS	Non disponible
Cobas	VDBP recombin.	Standardise/LCMS vérifie par NIST (SRM972)	Dithiothreitol NaOH
Isys	Mouton polycl.	UV quantifie/ LCMS	NaOH Methanol et azide de Na
Liaison	Chèvre polyc.	Diasorin VitD RIA	Ethanol + surfactants +ProClin
Architect	Chèvre polycl.	Standardise/LCMS	Methanol + triethanolamine + ANSA

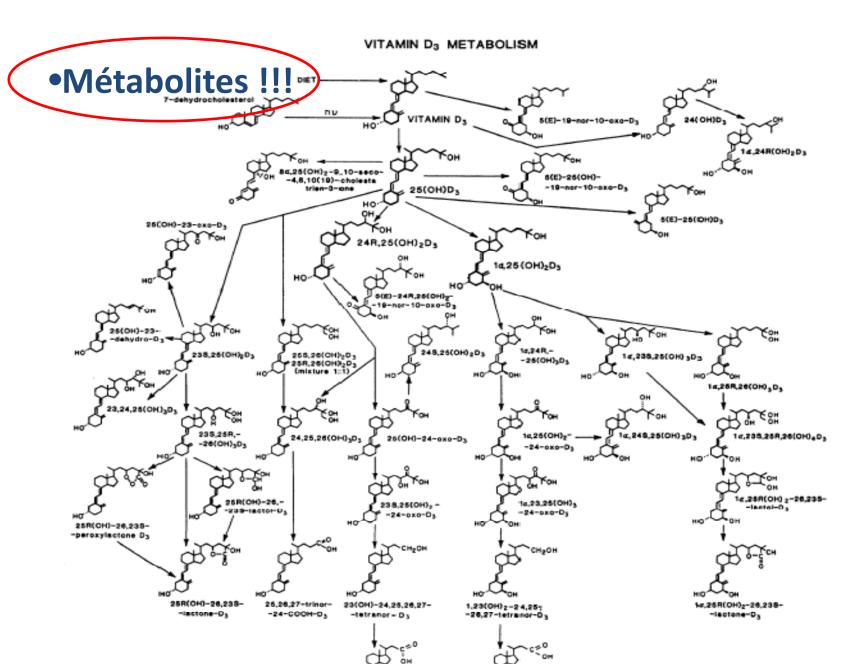
• Contrôles de qualité externe : EEQ

DEQAS permet de connaître le positionnement des différentes méthodes (comparaison des méthodes entre elles) et leur CV%

EEQ DQAS (2009):

Sample	Method	n	Method Mean	SD	CV
353	(all methods)	563	92.3 (36.9)	15.4 (6.2)	16.7
353	Automated IDS EIA	56	92.6 (37.1)	12.8 (5.1)	13.9
353	Biosource	1	283.0 (113.2)	0.0 (0.0)	0.0
353	Chromatographic Ligand Binding Assay	1	89.0 (35.6)	0.0 (0.0)	0.0
353	DiaSorin Liaison Total	201	87.5 (35.0)	10.4 (4.2)	11.9
353	DiaSorin RIA	42	83.5 (33.4)	13.4 (5.4)	16.1
353	HPLC	27	110.2 (44.1)	27.6 (11.0)	25.0
353	IDS-iSYS	3	106.0 (42.4)	4.3 (1.7)	4.1
353	LC-MS	53	110.2 (44.1)	13.9 (5.6)	12.6
353	Roche 250HD3	31	99.3 (39.7)	14.7 (5.9)	14.8
353	Unknown	6	109.5 (43.8)	14.3 (5.7)	13.1
353	IDS EIA	110	86.5 (34.6)	12.3 (4.9)	14.3
353	IDS RIA	32	102.5 (41.0)	12.4 (5.0)	12.1

Sample Method	n	Method Mean	SD	CV
420 (all methods)	1099	75.6 (30.2)	10.8 (4.3)	14.3
420 Abbott Architect	61	75.7 (30.3)	5.5 (2.2)	7.3
420 Automated IDS FIA.	82	78.3 (31.3)	8.5 (3.4)	10.8
420 DIASource Elisa	1	87.0 (34.8)	0.0 (0.0)	0.0
420 DIASource Total 250HD	1	101.0 (40.4)	0.0 (0.0)	0.0
420 DiaSorin Liaison Total	351	67.4 (27.0)	5.6 (2.3)	8.4
420 DiaSorin RIA	23	75.2 (30.1)	15.4 (6.2)	20.5
420 Diazyme 250H Vit D	3	67.6 (27.0)	5.6 (2.2)	8.3
420 Euroimmun ELISA	2	75.4 (30.2)	1.7 (0.7)	2.2
420 HPLC	31	84.8 (33.9)	12.3 (4.9)	14.5
420 IDS-iSYS	144	82.1 (32.8)	6.4 (2.6)	7.9
420 LC-MS	131	82.2 (32.9)	8.1 (3.2)	9.8
420 Roche Total 250HD	94	86.5 (34.6)	6.5 (2.6)	7.5
420 Unknown	7	88.6 (35.5)	15.8 (6.3)	17.8
420 IDS EIA	103	75.4 (30.2)	8.6 (3.4)	11.4
420 IDS RIA	9	81.0 (32.4)	10.3 (4.1)	12.7
420 Siemens ADVIA Centaur	56	67.2 (26.9)	10.5 (4.2)	15.6


D.E.Q.A.S: 5 Pools sériques 4 fois par an:

		LC-	MS	DIASORIN	LIAISON	ROCHE	TOTAL	SIEMENS	CENTAUR	IDS-	ISYS	Arch	nitect
	Echantillon	n	m	n	m	n	m	n	m	n	m	n	m
	416	72	57,1	261	45,5	73	67,4	41	38	103	57,2	46	47,7
	417	72	52	261	43,3	72	48	41	37,4	104	52,9	45	43,3
juil-12	418	72	32,5	261	25,7	70	25,7	41	30,9	103	45	41	27,8
	419	59	12,3	246	13	69	13,7	39	17,1	65	14,9	34	16,3
	420	72	82,5	261	67,3	72	86,6	41	68,2	104	83,3	46	75,6
	411	133	67,1	366	58,3	80	67,3	57	46,3	139	72,1	51	60,3
mai-12	412	134	27,1	366	25,2	80	26,5	57	20,5	139	28,4	45	29,2
IIIai-12	413	134	56,8	366	47,3	81	56,4	57	35,7	139	60,7	51	49,4
	415	133	63,7	365	55,8	80	56,6	57	43,3	139	63,8	51	56,9
	406	124	24,6	399	23,2	61	26,7	46	21,9	131	26,4	32	29,8
fev- 12	407	123	51,8	401	43	61	39,9	46	36	131	50,8	34	42,4
164-12	408	125	80	401	66,8	61	69,5	46	56,4	131	81,3	34	74,2
	409	125	69,5	401	61,6	60	68,5	46	54,8	131	78,1	34	65,2
	401	115	85,9	408	75,8	32	82,4	16	65,2	119	94,7	22	84,7
nov-11	402	115	29	406	24	32	23,7	16	25,5	119	29,1	22	25,8
1104-11	403	115	65,9	408	61,3	32	53,8	16	53,1	119	70,7	22	63,9
	404	115	51,2	408	43,4	32	46,7	16	39,5	119	52,6	22	44,7

Corrélation entre techniques utilisant des AC et LC MS/MS

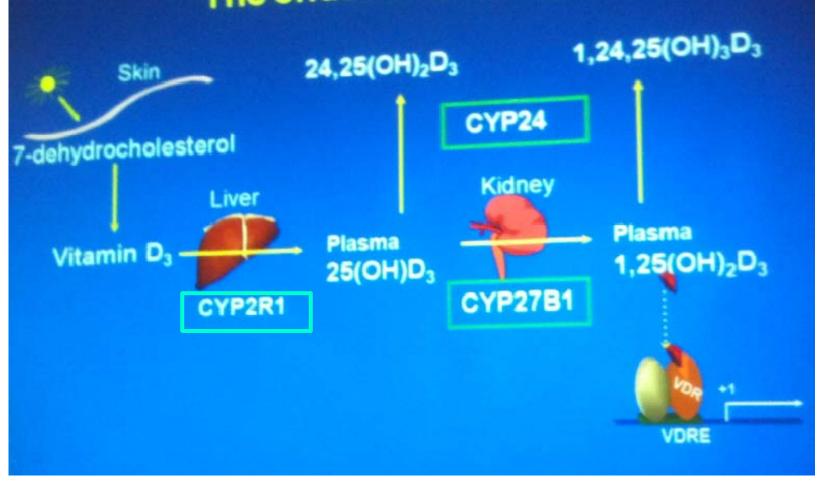
	Regression	Coefficient de correlation	x=30	Biais%	x=60	Biais%	x=80	Biais%
Centaur	0,6721x + 4,6385	0,93	25	-16,7	45	-25	58	-27,5
Cobas	0,9648x - 1,0349	0,93	28	-6,7	57	-5	76	-5
Isys	1,0214x + 1,9745	0,97	32	6,7	63	5	84	5
Liaison	0,8413x - 0,9254	0,98	24	-20	50	-16,7	66	-17,5
Architect	0,8871x - 1,815	0,96	25	-16,7	51	-15	69	-13,8

La Justesse: Elle est quantifiée par le Biais

Plus de 40 métabolites ont été identifiés (Bouillon R. et al, Endocr Rev 1995, 16:200-57)

24,25,26,27-tetranor--23-COOH-D₃ 10,(OH)-24,26,26,27--tetranor-23-COOH-D₃ (Celcitroic sold)

Métabolites


- Facteurs critiques:
- Détection des métabolites et des variants
- Ces IA sont basés soit sur des AC soit mono, soit polyclonaux soit VDBP humaine recombinante tous

⇒réactions croisées avec ces métabolites

DEQAS: 3 échantillons avec métabolites

	LC MS	LIAISON	ROCHE	CENTAUR	ISYS	ARCHITECT			
Echantillon chargé en 3 épi 25OH D									
405	109,2	43,5	76	40,5	52,7	44,9			
Echant	illon cha	rgé en 24	4,25 (OH	Ⅎ)² D					
414	56,6	121,4	94	196,9	269,9	388,5			
Echant	Echantillon contenant environ 64% de 25OHD2 endogene								
410	55,1	40,8	39,3	39,5	39,5	32,8			

Vitamin D metabolism: The endocrine system

24,25-(OH)2D

•L'AC de Hollis reconnait l'absence de l'Ag acide C-22 sur la chaine latérale:

⇒100% de réaction croisée avec le métabolite 24,25-(OH)2D (D2 et D3) (taux habituel 10- 15%)

Problème pour des concentrations élevées de 250HD ⇒ Surestimation de la 250HD totale

•LC MS/MS \Rightarrow un pic différent avec ce métabolite (Tr et MM \neq)

	LCMSMS	Liaison	Cobas	Centaur	lsys	Architect
	echantillon chargé en 24,25 (OH) ² D					
414	56,6	121,4	94	196,9	269,9	388,5

Importance clinique de ce métabolite:

biologiquement non actif (produit de dégradation) Intérêt limité

MAIS: récemment : Le ratio 25-OH-D / 24,25-(OH)2D peut changer:

⇒IRC ↑ de FGF-23 (hormone régulatrice du Phosphore) qui stimule le CYP24A1

⇒IIH mutation du CYP24A1 entrainant perte de fonction

(IIH=hypercalcémie idiopathique infantile)

3-Epi-25-(OH)D

Le métabolite 3 épi 250H vitamine D diffère du 250H vitamine D uniquement par l'arrangement asymétrique du groupement OH en position C3 (taux habituel très faible).

LC MS/MS ne différencie pas les 2 épimères (sauf avec des colonnes à très haute résolution analytique)

	LCMSMS	Liaison	Cobas	Centaur	Isys	Architect
	ech	antillon ch	nargé en 3	3 épi 250l	H D	
405	109,2	43,5	76	40,5	52,7	44,9

Cette épimérisation serait caractéristique d'un métabolisme immature de la vitamine D (nourrissons et jeunes enfants) et donne le 3-épi- 1α ,25(OH)2 D métabolite biologiquement actif.

25 OH D2

	LCMSMS	Liaison	Cobas	Centaur	Isys	Architect
ec	hantillon co	ontenant e	nviron 64%	% de 25OH	D2 endoge	ene
410	55,1	40,8	39,3	39,5	39,5	32,8

Conclusion

Ces dernières années:

- Amélioration des performances des IA
- •Tendance très nette à calibrer ces IA vis-à-vis de la LC MS/MS
- •Bonne comparaison entre ces IA (r compris entre 0.85 et 0.95)
- •Ces IA couvrent correctement les valeurs cliniquement importantes

Mais il faut améliorer :

- •la comparabilité à la LC MS/MS
- •l'inactivation de la VDBP
- •la reconnaissance des métabolites et leur signification clinique

